Server IP : 195.201.23.43 / Your IP : 3.15.0.242 Web Server : Apache System : Linux webserver2.vercom.be 5.4.0-192-generic #212-Ubuntu SMP Fri Jul 5 09:47:39 UTC 2024 x86_64 User : kdecoratie ( 1041) PHP Version : 7.1.33-63+ubuntu20.04.1+deb.sury.org+1 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals, MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /lib/python3/dist-packages/docutils/transforms/ |
Upload File : |
# $Id: __init__.py 8358 2019-08-26 16:45:09Z milde $ # Authors: David Goodger <goodger@python.org>; Ueli Schlaepfer # Copyright: This module has been placed in the public domain. """ This package contains modules for standard tree transforms available to Docutils components. Tree transforms serve a variety of purposes: - To tie up certain syntax-specific "loose ends" that remain after the initial parsing of the input plaintext. These transforms are used to supplement a limited syntax. - To automate the internal linking of the document tree (hyperlink references, footnote references, etc.). - To extract useful information from the document tree. These transforms may be used to construct (for example) indexes and tables of contents. Each transform is an optional step that a Docutils component may choose to perform on the parsed document. """ __docformat__ = 'reStructuredText' from docutils import languages, ApplicationError, TransformSpec class TransformError(ApplicationError): pass class Transform(object): """ Docutils transform component abstract base class. """ default_priority = None """Numerical priority of this transform, 0 through 999 (override).""" def __init__(self, document, startnode=None): """ Initial setup for in-place document transforms. """ self.document = document """The document tree to transform.""" self.startnode = startnode """Node from which to begin the transform. For many transforms which apply to the document as a whole, `startnode` is not set (i.e. its value is `None`).""" self.language = languages.get_language( document.settings.language_code, document.reporter) """Language module local to this document.""" def apply(self, **kwargs): """Override to apply the transform to the document tree.""" raise NotImplementedError('subclass must override this method') class Transformer(TransformSpec): """ Stores transforms (`Transform` classes) and applies them to document trees. Also keeps track of components by component type name. """ def __init__(self, document): self.transforms = [] """List of transforms to apply. Each item is a 4-tuple: ``(priority string, transform class, pending node or None, kwargs)``. """ self.unknown_reference_resolvers = [] """List of hook functions which assist in resolving references""" self.document = document """The `nodes.document` object this Transformer is attached to.""" self.applied = [] """Transforms already applied, in order.""" self.sorted = 0 """Boolean: is `self.tranforms` sorted?""" self.components = {} """Mapping of component type name to component object. Set by `self.populate_from_components()`.""" self.serialno = 0 """Internal serial number to keep track of the add order of transforms.""" def add_transform(self, transform_class, priority=None, **kwargs): """ Store a single transform. Use `priority` to override the default. `kwargs` is a dictionary whose contents are passed as keyword arguments to the `apply` method of the transform. This can be used to pass application-specific data to the transform instance. """ if priority is None: priority = transform_class.default_priority priority_string = self.get_priority_string(priority) self.transforms.append( (priority_string, transform_class, None, kwargs)) self.sorted = 0 def add_transforms(self, transform_list): """Store multiple transforms, with default priorities.""" for transform_class in transform_list: priority_string = self.get_priority_string( transform_class.default_priority) self.transforms.append( (priority_string, transform_class, None, {})) self.sorted = 0 def add_pending(self, pending, priority=None): """Store a transform with an associated `pending` node.""" transform_class = pending.transform if priority is None: priority = transform_class.default_priority priority_string = self.get_priority_string(priority) self.transforms.append( (priority_string, transform_class, pending, {})) self.sorted = 0 def get_priority_string(self, priority): """ Return a string, `priority` combined with `self.serialno`. This ensures FIFO order on transforms with identical priority. """ self.serialno += 1 return '%03d-%03d' % (priority, self.serialno) def populate_from_components(self, components): """ Store each component's default transforms, with default priorities. Also, store components by type name in a mapping for later lookup. """ for component in components: if component is None: continue self.add_transforms(component.get_transforms()) self.components[component.component_type] = component self.sorted = 0 # Set up all of the reference resolvers for this transformer. Each # component of this transformer is able to register its own helper # functions to help resolve references. unknown_reference_resolvers = [] for i in components: unknown_reference_resolvers.extend(i.unknown_reference_resolvers) decorated_list = sorted((f.priority, f) for f in unknown_reference_resolvers) self.unknown_reference_resolvers.extend(f[1] for f in decorated_list) def apply_transforms(self): """Apply all of the stored transforms, in priority order.""" self.document.reporter.attach_observer( self.document.note_transform_message) while self.transforms: if not self.sorted: # Unsorted initially, and whenever a transform is added. self.transforms.sort() self.transforms.reverse() self.sorted = 1 priority, transform_class, pending, kwargs = self.transforms.pop() transform = transform_class(self.document, startnode=pending) transform.apply(**kwargs) self.applied.append((priority, transform_class, pending, kwargs))Private