Private
Server IP : 195.201.23.43  /  Your IP : 18.217.230.80
Web Server : Apache
System : Linux webserver2.vercom.be 5.4.0-192-generic #212-Ubuntu SMP Fri Jul 5 09:47:39 UTC 2024 x86_64
User : kdecoratie ( 1041)
PHP Version : 7.1.33-63+ubuntu20.04.1+deb.sury.org+1
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /lib/ruby/2.7.0/bundler/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ HOME SHELL ]     

Current File : /lib/ruby/2.7.0/bundler/similarity_detector.rb
# frozen_string_literal: true

module Bundler
  class SimilarityDetector
    SimilarityScore = Struct.new(:string, :distance)

    # initialize with an array of words to be matched against
    def initialize(corpus)
      @corpus = corpus
    end

    # return an array of words similar to 'word' from the corpus
    def similar_words(word, limit = 3)
      words_by_similarity = @corpus.map {|w| SimilarityScore.new(w, levenshtein_distance(word, w)) }
      words_by_similarity.select {|s| s.distance <= limit }.sort_by(&:distance).map(&:string)
    end

    # return the result of 'similar_words', concatenated into a list
    # (eg "a, b, or c")
    def similar_word_list(word, limit = 3)
      words = similar_words(word, limit)
      if words.length == 1
        words[0]
      elsif words.length > 1
        [words[0..-2].join(", "), words[-1]].join(" or ")
      end
    end

  protected

    # https://www.informit.com/articles/article.aspx?p=683059&seqNum=36
    def levenshtein_distance(this, that, ins = 2, del = 2, sub = 1)
      # ins, del, sub are weighted costs
      return nil if this.nil?
      return nil if that.nil?
      dm = [] # distance matrix

      # Initialize first row values
      dm[0] = (0..this.length).collect {|i| i * ins }
      fill = [0] * (this.length - 1)

      # Initialize first column values
      (1..that.length).each do |i|
        dm[i] = [i * del, fill.flatten]
      end

      # populate matrix
      (1..that.length).each do |i|
        (1..this.length).each do |j|
          # critical comparison
          dm[i][j] = [
            dm[i - 1][j - 1] + (this[j - 1] == that[i - 1] ? 0 : sub),
            dm[i][j - 1] + ins,
            dm[i - 1][j] + del,
          ].min
        end
      end

      # The last value in matrix is the Levenshtein distance between the strings
      dm[that.length][this.length]
    end
  end
end
Private